Search results for " Inference"
showing 10 items of 337 documents
X!TandemPipeline: a tool to manage sequence redundancy for protein inference and phosphosite identification
2017
X!TandemPipeline is a software designed to perform protein inference and to manage redundancy in the results of phosphosite identification by database search. It provides the minimal list of proteins or phosphosites that are present in a set of samples using grouping algorithms based on the principle of parsimony. Regarding proteins, a two-level classification is performed, where groups gather proteins sharing at least one peptide and subgroups gather proteins that are not distinguishable according to the identified peptides. Regarding phosphosites, an innovative approach based on the concept of phosphoisland is used to gather overlapping phosphopeptides. The graphical interface of X!Tandem…
How challenging RADseq data turned out to favor coalescent-based species tree inference. A case study in Aichryson (Crassulaceae)
2022
Analysing multiple genomic regions while incorporating detection and qualification of discordance among regions has become standard for understanding phylogenetic relationships. In plants, which usually have comparatively large genomes, this is feasible by the combination of reduced-representation library (RRL) methods and high-throughput sequencing enabling the cost effective acquisition of genomic data for thousands of loci from hundreds of samples. One popular RRL method is RADseq. A major disadvantage of established RADseq approaches is the rather short fragment and sequencing range, leading to loci of little individual phylogenetic information. This issue hampers the application of coa…
Model‐based approaches to unconstrained ordination
2014
Summary Unconstrained ordination is commonly used in ecology to visualize multivariate data, in particular, to visualize the main trends between different sites in terms of their species composition or relative abundance. Methods of unconstrained ordination currently used, such as non-metric multidimensional scaling, are algorithm-based techniques developed and implemented without directly accommodating the statistical properties of the data at hand. Failure to account for these key data properties can lead to misleading results. A model-based approach to unconstrained ordination can address this issue, and in this study, two types of models for ordination are proposed based on finite mixtu…
Calibrating Expert Assessments Using Hierarchical Gaussian Process Models
2020
Expert assessments are routinely used to inform management and other decision making. However, often these assessments contain considerable biases and uncertainties for which reason they should be calibrated if possible. Moreover, coherently combining multiple expert assessments into one estimate poses a long-standing problem in statistics since modeling expert knowledge is often difficult. Here, we present a hierarchical Bayesian model for expert calibration in a task of estimating a continuous univariate parameter. The model allows experts' biases to vary as a function of the true value of the parameter and according to the expert's background. We follow the fully Bayesian approach (the s…
Discard ban: A simulation-based approach combining hierarchical Bayesian and food web spatial models
2020
12 pages, 6 figures, 6 tables, 2 appendixes, supplementary data https://doi.org/10.1016/j.marpol.2019.103703
Thompson Sampling Based Active Learning in Probabilistic Programs with Application to Travel Time Estimation
2019
The pertinent problem of Traveling Time Estimation (TTE) is to estimate the travel time, given a start location and a destination, solely based on the coordinates of the points under consideration. This is typically solved by fitting a function based on a sequence of observations. However, it can be expensive or slow to obtain labeled data or measurements to calibrate the estimation function. Active Learning tries to alleviate this problem by actively selecting samples that minimize the total number of samples needed to do accurate inference. Probabilistic Programming Languages (PPL) give us the opportunities to apply powerful Bayesian inference to model problems that involve uncertainties.…
Predicting marine species distributions: complementarity of food-web and Bayesian hierarchical modelling approaches
2019
16 pages, 9 figures, 3 tables, 1 appendix
Empirical Bayes improves assessments of diversity and similarity when overdispersion prevails in taxonomic counts with no covariates
2019
Abstract The assessment of diversity and similarity is relevant in monitoring the status of ecosystems. The respective indicators are based on the taxonomic composition of biological communities of interest, currently estimated through the proportions computed from sampling multivariate counts. In this work we present a novel method to estimate the taxonomic composition able to work even with a single sample and no covariates, when data are affected by overdispersion. The presence of overdispersion in taxonomic counts may be the result of significant environmental factors which are often unobservable but influence communities. Following the empirical Bayes approach, we combine a Bayesian mo…
Hierarchical log Gaussian Cox process for regeneration in uneven-aged forests
2021
We propose a hierarchical log Gaussian Cox process (LGCP) for point patterns, where a set of points x affects another set of points y but not vice versa. We use the model to investigate the effect of large trees to the locations of seedlings. In the model, every point in x has a parametric influence kernel or signal, which together form an influence field. Conditionally on the parameters, the influence field acts as a spatial covariate in the intensity of the model, and the intensity itself is a non-linear function of the parameters. Points outside the observation window may affect the influence field inside the window. We propose an edge correction to account for this missing data. The par…
Predictive Model Markup Language (PMML) Representation of Bayesian Networks: An Application in Manufacturing
2018
International audience; Bayesian networks (BNs) represent a promising approach for the aggregation of multiple uncertainty sources in manufacturing networks and other engineering systems for the purposes of uncertainty quantification, risk analysis, and quality control. A standardized representation for BN models will aid in their communication and exchange across the web. This article presents an extension to the predictive model markup language (PMML) standard for the representation of a BN, which may consist of discrete variables, continuous variables, or their combination. The PMML standard is based on extensible markup language (XML) and used for the representation of analytical models…